Engage your students with effective distance learning resources. ACCESS RESOURCES>>

Grade 4

    4.OA. Grade 4 - Operations and Algebraic Thinking

      4.OA.A. Use the four operations with whole numbers to solve problems.

        4.OA.A.1. Interpret a multiplication equation as a comparison, e.g., interpret $35 = 5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.

        4.OA.A.2. Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.See Glossary, Table 2.

        4.OA.A.3. Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.

      4.OA.B. Gain familiarity with factors and multiples.

        4.OA.B.4. Find all factor pairs for a whole number in the range 1–100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1–100 is a multiple of a given one-digit number. Determine whether a given whole number in the range 1–100 is prime or composite.

      4.OA.C. Generate and analyze patterns.

        4.OA.C.5. Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule “Add 3” and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.

    4.NBT. Grade 4 - Number and Operations in Base Ten

      4.NBT.B. Use place value understanding and properties of operations to perform multi-digit arithmetic.

        4.NBT.B.4. Fluently add and subtract multi-digit whole numbers using the standard algorithm.

        • No tasks yet illustrate this standard.

        4.NBT.B.5. Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

        4.NBT.B.6. Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.

    4.NF. Grade 4 - Number and Operations---Fractions

      4.NF.B. Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.

        4.NF.B.3. Understand a fraction $a/b$ with $a > 1$ as a sum of fractions $1/b$.

          4.NF.B.3.b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $\frac38 = \frac18 + \frac18 + \frac18$; $\frac38 = \frac18 + \frac28$; $2 \frac18 = 1 + 1 + \frac18 = \frac88 + \frac88 + \frac18.$

          4.NF.B.3.d. Solve word problems involving addition and subtraction of fractions referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem.

          • No tasks yet illustrate this standard.

        4.NF.B.4. Apply and extend previous understandings of multiplication to multiply a fraction by a whole number.

          4.NF.B.4.a. Understand a fraction $a/b$ as a multiple of $1/b$. For example, use a visual fraction model to represent $5/4$ as the product $5 \times (1/4)$, recording the conclusion by the equation $5/4 = 5 \times (1/4).$

          • No tasks yet illustrate this standard.

          4.NF.B.4.b. Understand a multiple of $a/b$ as a multiple of $1/b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times (2/5)$ as $6 \times (1/5)$, recognizing this product as $6/5$. (In general, $n \times (a/b) = (n \times a)/b.$)

          • No tasks yet illustrate this standard.

          4.NF.B.4.c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat 3/8 of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?

      4.NF.C. Understand decimal notation for fractions, and compare decimal fractions.

        4.NF.C.7. Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols $>$, =, or $<$, and justify the conclusions, e.g., by using a visual model.

    4.MD. Grade 4 - Measurement and Data

      4.MD.A. Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

        4.MD.A.1. Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in. Express the length of a 4 ft snake as 48 in. Generate a conversion table for feet and inches listing the number pairs $(1, 12)$, $(2, 24)$, $(3, 36)$, …

        4.MD.A.2. Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

        4.MD.A.3. Apply the area and perimeter formulas for rectangles in real world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.

      4.MD.B. Represent and interpret data.

        4.MD.B.4. Make a line plot to display a data set of measurements in fractions of a unit $(1/2, 1/4, 1/8)$. Solve problems involving addition and subtraction of fractions by using information presented in line plots. For example, from a line plot find and interpret the difference in length between the longest and shortest specimens in an insect collection.

      4.MD.C. Geometric measurement: understand concepts of angle and measure angles.

        4.MD.C.5. Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement:

        • No tasks yet illustrate this standard.

          4.MD.C.5.a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through 1/360 of a circle is called a “one-degree angle,” and can be used to measure angles.

          • No tasks yet illustrate this standard.

          4.MD.C.5.b. An angle that turns through $n$ one-degree angles is said to have an angle measure of $n$ degrees.

          • No tasks yet illustrate this standard.

        4.MD.C.6. Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.

        4.MD.C.7. Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.