A Cubic Identity
Task
Let a and b be real numbers with a>b>0 and \frac{a^3-b^3}{(a-b)^3}=\frac{73}{3}. What is \frac{b}{a}?
IM Commentary
This task presents a challenging exercise in both algebraic manipulations and seeing structure in algebraic expressions (MP 7). In the solutions provided, students have to identify that (a-b) is a factor of (a^3-b^3) in order to simplify the expressions appearing to quadratics. At that point, either factoring or the quadratic formula can be employed to compute \frac{b}{a}.
This task was adapted from problem #17 on the 2012 American Mathematics Competition (AMC) 10A Test, which asked students for the value a-b given that a and b were relatively prime integers. (In the end, this forces a=10 and b=7, so a-b=3.) For the 2012 AMC 10A, which was taken by 73,703 students, the multiple choice answers for the problem had the following distribution:
Choice | Answer | Percentage of Answers |
(A) | 1 | 6.15 |
(B) | 2 | 5.11 |
(C) | 3 | 25.76 |
(D) | 4 | 5.08 |
(E) | 5 | 2.44 |
Omit | -- | 55.42 |
Of the 73,703 students: 36206, or 49%, were in 10th grade;25,498 or 35%, were in 9th grade; and the remainder were below than 9th grade.
Solutions
Solution: 1 Algebra, then Factoring
Vital to solving this problem is the fact that the numerator is a difference of cubes, which suggests using the identity a^3 - b^3 = (a-b)(a^2 + ab + b^2). Using this identity, and that a\neq b, we can simplify the expression
The equation \frac{a^3-b^3}{(a-b)^3} = \frac{73}{3} can be written, using the identity from the previous paragraph, as as
Because a \gt b \gt 0, we are looking for a solution to 7a - 10b = 0 rather than 10a - 7b = 0, which gives 7a=10b. Re-writing, we find \frac{b}{a}=\frac{7}{10}=0.7.
Solution: 2. Algebra, then Quadratic Formula
This solution is identical to the first until the quadratic relation between a and b is reached, at which point we instead use here the quadratic formula.
Vital to solving this problem is the fact that the numerator is a difference of cubes, which suggests using the identity a^3 - b^3 = (a-b)(a^2 + ab + b^2).
Using this identity, and that a\neq b, we can simplify the expression
The equation \frac{a^3-b^3}{(a-b)^3} = \frac{73}{3} can be written, using the identity from the previous paragraph, as as
Gathering all terms on the same side, this is the same as 70a^2-149ab+70b^2 = 0. Dividing both sides by a^2, we are left with the quadratic equation 70\left(\frac{b}{a}\right)^2-149\left(\frac{b}{a}\right)+70=0. Using the quadratic formula gives \frac{b}{a}=\frac{149\pm\sqrt{149^2-4\cdot 70^2}}{140}=\frac{149\pm 51}{40}=\frac{10}{7}\text{ or }\frac{7}{10}. Since a \gt b \gt 0, \frac{7}{10} must be the solution we are looking for.
Alternatively, we could apply the quadratic formula directly to the (70)a^2-(149b)a+(70b^2)=0 to get a=\frac{149b\pm \sqrt{(149b)^2-4\cdot 70\cdot (70b^2)}}{140}=\frac{(149\pm 51)b}{140}, giving to the same solution.
A Cubic Identity
Let a and b be real numbers with a>b>0 and \frac{a^3-b^3}{(a-b)^3}=\frac{73}{3}. What is \frac{b}{a}?