Task
Mike likes to canoe. He can paddle 150 feet per minute. He is planning a river trip that will take him to a destination about 30,000 feet upstream (that is, against the current). The speed of the current will work against the speed that he can paddle.
-
Mike guesses that the current is flowing at a speed of 50 feet per minute. Assuming this is correct, how long will it take for Mike to reach his destination?
-
Mike does not really know the speed of the current. Make a table showing the time it will take him to reach his destination for different speeds:
Speed of Current
(feet per minute) |
Mike’s Speed
(feet per minute) |
Time for Mike to travel 30,000 feet (minutes) |
0 |
|
|
50 |
|
|
100 |
|
|
140 |
|
|
149 |
|
|
$s$ |
|
|
-
The time $T$ taken by the trip, in minutes, as a function of the speed of the current is $s$ feet/minute. Write an equation expressing $T$ in terms of $s$. Explain why $s = 150$ does not make sense for this function, both in terms of the canoe trip and in terms of the equation.
-
Sketch a graph of the equation in part (c). Explain why it makes sense that the graph has a vertical asymptote at $s = 150$.
IM Commentary
The primary purpose of this task is to lead students to a numerical and graphical understanding of the behavior of a rational function near a vertical asymptote, in terms of the expression defining the function. The canoe context focuses attention on the variables as numbers, rather than as abstract symbols. Variation 1 of this task uses function notation and expects students to derive the formula for the function directly, without the aid of a table.
The task also provides an opportunity to discuss mathematical models, their interpretation, and their limits. For example, teachers could ask if it makes sense for $s$ to be negative. This might correspond to a flow of water moving in the same direction as Mike, and indeed the equation in the solution gives the correct answer in that case.
More fanciful, and requiring a longer discussion, is the question of whether it makes sense to consider values of $s$ larger than 150. If $s=300$, for example, a naive application of the formula predicts that Mike will arrive at his destination in $-200$ minutes! It is reasonable to say that negative times do not make sense and to exclude values of $s$ greater than $150$. However, value $-200$ could also be interpreted as referring to an event that takes place 200 minutes before the trip starts. If Mike had been at his destination 200 minutes ago, then a river which was flowing at 300 feet per minute against his direction of travel would push him precisely the 30,000 feet from his destination that the problem began with.