Running around a track II
An Olympic $400$ meter track is made up of two straight sides, each measuring $84.39$ meters in length, and two semi-circular curves with a radius of $36.5$ meters as pictured below:
In a $400$ meter race, runners are staggered with those in the outermost lanes starting the furthest ahead on the track: this way they can all complete the race at a finishing line perpendicular to the track in the straightaway where they begin the race. The width of each lane is $1.22$ meters. Also important for this problem is the fact, as per Olympic guidelines, that the $400$ meter distance for lane $1$ is measured $30$ centimeters from the inside of the track, and $20$ centimeters from the inside of each other lane . This is pictured below:
- How does the perimeter of the track $20$ centimeters from the inside of lane $2$ compare to the perimeter $30$ centimeters from the inside of lane $1$? How far ahead should the runner in lane $2$ start, compared to the runner in lane $1$, if they are both to complete $400$ meters at the finishing line on the straightaway section?
- How does the perimeter of the track $20$ centimeters from the inside of lane $3$ compare to the perimeter $20$ centimeters from the inside of lane $2$? How far ahead should the runner in lane $3$ start, compared to the runner in lane $2$, if they are both to complete $400$ meters at the finishing line on the straightaway section?
- In a longer distance race where the runners are all toward the inside of the track, why is it more efficient for a runner wishing to pass others to do so in the straightaway section of the track instead of through the curves?