-
Answers will vary. One simple set of five numbers with a median of 10 would be $\{10, 10, 10, 10, 10\}$. Here, however, the mean is also 10. If we increase one of the 10's to 20, this will not impact the median while it will change the mean to 12. So $\{10, 10, 10, 10, 20\}$ is an example of a set of five numbers whose mean is larger than the median.
- The sum of these ten numbers is 410 so the mean is 410 $\div$ 10 = 41. The middle two numbers are 30 and 50 so the median is 40. If 80 is replaced by 800 then the sum of the ten numbers is now 1130 and the mean is 1130 $\div$ 10 = 113. The median is still 40 as the middle two numbers have not changed, but the value of the mean increased.
-
Listed in increasing order of distance from the Earth the celestial bodies are: the moon, Venus, Mars, Mercury, Jupiter, Saturn, Syrius, Canopus. So for the median distance we take the average of Mercury and Jupiter, giving 0.0000382 light years. The mean distance is 39.825 light years.
A typical distance would be best communicated using the median. The mean distance is perplexing in this case as none of these celestial bodies is close to 40 light years away: most of them (the planets) are much closer, and one of them (Canopus) is much further away. The two stars, particularly Canopus, have greatly distorted the mean (relative to the median) because they are completely different orders of magnitude. The mean gives very little insightful information whereas the median tells us that the majority of the brightest objects in the sky are very close. This is clear in the case of the moon, less so in the case of the planets which do not appear, to the naked eye, much brighter (or ''closer'') than the brightest stars.
- The two largest values in the data set (8.6 and 310) cause the mean to be much larger than most values in the data set. The mean is not a very good indication of a typical value.
-
To better evaluate the mean and median of the home prices we can begin by listing them in non-decreasing size (with units of dollars): $h_1 \leq h_2 \leq \ldots \leq h_{100}$. We are given that the median home price is \$300,000. Since there are an even number of homes, the median is $\frac{h_{50} + h_{51}}{2}$. So we know that $$ h_{50} + h_{51} = 600,000. $$ The mean home price is the average of all of the home prices: $$ \text{Mean Home Price} = \frac{h_1 + h_2 + \ldots + h_{99} + h_{100}}{100}. $$ So if the mean home price value is \$1,000,000 this means that $$ h_1 + h_2 + \ldots + h_{99} + h_{100} = 100,000,000. $$ The only constraint the median puts on us is that $h_{50} + h_{51} = 600,000$. One way to satisfy these constraints would be to have $h_1, \ldots, h_{50}$ all be \$100,000, giving a total of \$5,000,000. If $h_{50} = \$100,000$ then we must have $h_{51} = \$500,000$ since these two homes together cost \$600,000. We could make $h_{51} = h_{52} = \ldots = h_{90} = \$500,000$. This adds \$20,000,000 in cost, leaving \$75,000,000 for the final ten homes. So we may take $$ h_{91} = \ldots = h_{100} = 7,500,000. $$ With this choice of home values, the median is \$300,000 but the mean is \$1,000,000. By adding in a small number of very expensive homes, the mean can be made as high as we wish with a given median value.
-
Answers will vary, but the explanation should depend on whether the student thinks that there will be unusual values in the data set. For example, if the student thinks that there may be a few people with very high incomes, they might argue that the median will be less than the mean.